منابع مشابه
Stability Analysis of Interface Temporal Discretization in Grid Overlapping Methods
We investigate the stability of a temporal discretization of interface terms in grid overlapping methods. A matrix stability analysis is performed on a model problem of the one-dimensional diffusion equation on overlapping grids. The scheme stability is first analyzed theoretically, and a proof of the unconditional stability of the first-order interface extrapolation scheme with the firstand se...
متن کاملProjection method III: Spatial discretization on the staggered grid
In E & Liu (SIAM J Numer. Anal., 1995), we studied convergence and the structure of the error for several projection methods when the spatial variable was kept continuous (we call this the semi-discrete case). In this paper, we address similar questions for the fully discrete case when the spatial variables are discretized using a staggered grid. We prove that the numerical solution in velocity...
متن کاملA two-grid discretization scheme for the Steklov eigenvalue problem
In the paper, a two-grid discretization scheme is discussed for the Steklov eigenvalue problem. With the scheme, the solution of the Steklov eigenvalue problem on a fine grid is reduced to the solution of the Steklov eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. Using spectral approximation theory, it is shown theoretically that the tw...
متن کاملMeasure-based diffusion grid construction and high-dimensional data discretization
Article history: Received 8 June 2014 Accepted 4 February 2015 Available online 11 February 2015 Communicated by Charles K. Chui
متن کاملA Sparse Grid Discretization with Variable Coefficient in High Dimensions
We present a Ritz-Galerkin discretization on sparse grids using pre-wavelets, which allows to solve elliptic differential equations with variable coefficients for dimension d = 2, 3 and higher dimensions d > 3. The method applies multilinear finite elements. We introduce an efficient algorithm for matrix vector multiplication using a Ritz-Galerkin discretization and semi-orthogonality. This alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of open source software
سال: 2021
ISSN: ['2475-9066']
DOI: https://doi.org/10.21105/joss.02744